
APS2 Documentation
Release 1.0

Blake Johnson, Colm Ryan, and Brian Donovan

November 09, 2016

Contents

1 Hardware Specifications 3
1.1 Detailed Specifications . 3
1.2 Triggering . 3
1.3 Communications Interface . 5
1.4 Status LED’s . 5

2 Installation Guide 7
2.1 Hardware . 7
2.2 Software . 7
2.3 Networking Setup . 9
2.4 Firmware Updates . 11

3 Pulse Sequencing 13
3.1 Background . 13
3.2 Superscalar Sequencer Design . 13
3.3 Cache Design . 14
3.4 Waveform Modulation . 15

4 Trigger Distribution Module 17
4.1 Base Functionality . 17
4.2 Building Custom Firmware . 17

5 APS2 Instruction Set 19
5.1 Abstract Instructions . 19
5.2 Concrete Instructions . 20
5.3 Example Sequences . 24

6 Formats 27
6.1 Waveforms . 27
6.2 Instructions . 27
6.3 Sequence Files . 27

7 API Reference 29
7.1 Enums . 29
7.2 High-level methods . 29
7.3 Low-level methods . 32

8 Indices and tables 35

i

ii

APS2 Documentation, Release 1.0

This document serves as the user manual and programming guide for the Arbitrary Pulse Sequencer, version 2 (APS2).

Contents:

Contents 1

APS2 Documentation, Release 1.0

2 Contents

CHAPTER 1

Hardware Specifications

The BBN Arbitrary Pulse Sequencer 2 (APS2) is a modular system providing up to 18 channels of analog waveform
generation with a maximum output rate of 1.2 GS/s and 14-bits of vertical resolution. Each module in an APS2 system
provides two analog outputs, DC coupled into a fixed +/- 1V range, and four digital outputs (1.5 V) for triggering other
equipment. Each APS2 module has 1 GB of DDR3 SDRAM for waveform and sequence storage, which is enough for
over 64 million sequence instructions. A low-latency cache allows for fast access to 128K waveform samples. Each
module can be independently triggered for sophisticated waveform scenarios.

The digital and analog circuits have been carefully engineered to provide extremely low-noise analog performance,
resulting in a noise spectral density that is orders of magnitude lower than competing products, as shown in Noise
Comparison.

1.1 Detailed Specifications

Analog channels two 14-bit 1.2 GS/s outputs per module
Digital channels four 1.5V outputs per module
Analog Jitter 7.5ps RMS
Digital Jitter 5ps RMS
Rise/fall time 2ns
Settling time 2ns to 10%, 10ns to 1%
Trigger modes Internal, external, system, or software triggering
Ext. trigger input 1 V minimum into 50 Ω, 5 V maximum; triggered on rising edge
Reference input 10 MHz sine or square, 1V to 3.3V peak to peak (+4 to +14 dBm)
Waveform cache 128K samples
Sequence memory 64M instructions
Min instruction duration 8 samples
Max instruction duration 8M samples (~7ms at 1.2GS/s)
Max loop repeats 65,536

1.2 Triggering

The APS2 supports four different types of triggers. The internal mode generates triggers on a programmable interval
between 6.66ns and 14s. The external mode listens for triggers on the front-panel SMA “trigger input” port. In this
mode, the APS2 is triggered on the rising edge of a 1-5V signal. The system trigger accepts triggers on the SATA
input port from the APS2 Trigger Distribution Module (TDM). Finally, the software mode allows the user to trigger
the APS2 via the host computer with the trigger() API method.

3

APS2 Documentation, Release 1.0

100 101 102 103 104 105−160

−150

−140

−130

−120

−110

−100

−90

Frequency (Hz)

II X6−1000M
BBN APS
Tek5014

Fig. 1.1: Comparison of AWG output noise Output noise power versus frequency for the Tektronix AWG5014,
Innovative Integration X6-1000M, and BBN APS. The APS’s linear power supplies and low-noise output amplifier
lead to signficant improvements in the noise performance. The II X6 is significantly better than the Tek5014, but
suffers from resonances in the noise spectrum because it is in a host PC environment.

Fig. 1.2: BBN APS2 front panel The front panel of the APS has two analog outputs, 4 marker outputs, a trigger
input, two SATA ports, a 1 GigE port, a 10 MHz reference input and two status LEDs.

4 Chapter 1. Hardware Specifications

APS2 Documentation, Release 1.0

1.3 Communications Interface

The APS2 communicates with a host PC via UDP/TCP over 1GigE. 1GigE is required so ensure all switches between
the host computer and APS2 support 1GigE. The APS2 supports static and DHCP assigned IP addresses. Instructions
for setting the APS2 IP addresses are contained in the Software section.

1.4 Status LED’s

The L1 and L2 LEDs provide status indicators for the communication (L1) and sequencing (L2) firmware components.

L1:

• off - SFP port failure

• green breathing - no ethernet connection;

• solid green - link established (but not necessarily connected to host);

• green blinks - receiving or transmitting data;

• red - fatal communication error. Power cycle the module to restore connectivity.

L2:

• dark - idle;

• solid green - playback enabled and outputing sequences;

• green breathing - playback enabled but no trigger received in the past 100ms;

• solid red - fatal cache controller error. Power cycle the module to restore playback functionality.

• blinking red - cache stall in playback. See cache for details.

1.3. Communications Interface 5

APS2 Documentation, Release 1.0

6 Chapter 1. Hardware Specifications

CHAPTER 2

Installation Guide

2.1 Hardware

The BBN APS2 system contains one or more analog output modules and an trigger distribution module in an enclosure
that supplies power to each module. Up to 9 analog modules may be installed in a single 19” 8U enclosure, providing
18 analog output channels. Installing a new module only requires plugging it into a free slot of a powered-off system,
then connecting a SATA cable from the new APS module to the trigger module.

Each module in an APS2 system acts as an independent network endpoint. The modules communicate with a host
computer via a UDP/TCP interface over 1GigE. The APS2 will not negotiate down to 100Mb or 10Mb so ensure you
have an appropriate switch and patch cable. To ensure high-bandwidth throughput, it is important that the APS2 and
the host computer not be separated by too many network hops. If possible, locate the host and APS2 on a common
switch or router 1.

While the APS can run in a standalone configuration, we recommend running with a 10 MHz (+7 dBm) external
reference (square wave or sine wave). This reference must be supplied at the corresponding front panel inputs before
powering on the system. Multiple devices can be synchronized by supplying an external trigger that is phase locked
to this same reference.

2.2 Software

In order to control the APS2, BBN provides a Windows shared library. You may download this driver from our APS2
source code repository (http://github.com/BBN-Q/libaps2). Click on ‘releases’ to find the latest binaries. We provide
MATLAB and Python wrappers to this library, but the APS2 may be used with any software that can call a C-API
DLL. To use the MATLAB driver, simply add the path of the unzipped driver to your MATLAB path. The driver
depends on other shared libraries, for example HDF5 and the gcc libstdc++ from MinGW-w64. We include these
DLL’s with the Windows releases and they need be in the same folder as the driver to ensure they can by dynamically
loaded with the libaps2 driver 2.

2.2.1 File List

The releases follow a directory structure that corresponds to the git repository.

• examples - Example sequence and waveform files
1 The APS2 typically uses static self-assigned IP addresses and should ideally be behind the same router as the control computer.
2 There is the potential for conflicts with previously loaded DLL’s that are incompatible versions. For example, if you have loaded another driver

into Matlab that was built with a different version of MinGW-w64 or trying to load libaps2 into Julia which was built with a different version of
MinGW-w64. There is no easy solution to this problem on the Windows platform. Please contact BBN if you run into this situation.

7

http://github.com/BBN-Q/libaps2

APS2 Documentation, Release 1.0

– aps2_demo.m - Matlab demonstration script

– aps2_demo.py - Python demonstration script

* a full scale ramp;

* gaussian pulses from 256 samples down to 8 samples with 10ns gaps;

* square wave from 256 down to 8 samples with 10ns gaps;

* wfB.dat is negative wfA.dat.

– cpmg.h5 - a CPMG sequence Y90 - (delay - X180 - delay)^n - Y90m with n = [4, 8, 16, 32, 64]

– instr_prefetch.h5 - demonstration of subroutine prefetching

– ramsey.h5 - a Ramsey sequence X90 - delay - X90m

– ramsey_tppi.h5 - a Ramsey experiment with the second pulse phase modulated by Time Proportional
Phase Increment using the PHASE_OFFSET instruction

– ramsey_tppi_ssb.h5- same as ramsey_tppi but with SSB modulation of the pulses using on-board
modulation.

– ramsey_slipped.h5 - a Ramsey pattern but with the markers slipped by one sample to show the marker
resolution and jitter.

– wfA.dat/wfB.dat - test waveform patterns for play_waveform executable as signed integers one sample
per line:

• src - the source code

– src/lib - the shared library. libaps2.h contains the public API definitions.

– src/matlab - Matlab bindings to libaps2

– src/julia - Julia bindings to libaps2

– src/python - python bindings to libaps2

– src/util - test and utility command line programs. See below for description.

– src/C++ - C++ command line programs to play waveforms and sequences.

– src/wireshark - lua dissector for sniffing APS2 packets.

• build - compiled shared library and executable programs

– Shared library

* libaps2.dll - the main shared library

* load time dependencies for libaps2: libgcc_s_seh-1.dll, libhdf5-0.dll, libhdf5_cpp-0.dll,
libstdc++-6.dll, libszip-0.dll, zlib1.dll

– Command line programs

* play_waveform.exe - command line program to play a single waveform on the analog channels.

* play_sequence.exe - command line program to play a HDF5 sequence file.

– Command line utilities

* enumerate.exe - get a list of APS2 modules visible on the network subnet.

* program.exe - update the firmware. See Firmware Updates.

* flash.exe - update IP/DHCP and MAC addresses and the boot chip configuration sequence.

* reset.exe - reset an APS2.

8 Chapter 2. Installation Guide

APS2 Documentation, Release 1.0

– Self-test programs

* run_tests.exe - runs the unit test suite

2.2.2 Writing Sequences

The BBN APS2 has advanced sequencing capabilities. Fully taking advantage of these capabilities may require use
of higher-level languages which can be ‘compiled down’ into sequence instructions. BBN has produced one such
language, called Quantum Gate Language (QGL, http://github.com/BBN-Q/QGL), as well as a parameter management
GUI in the PyQLab suite (http://github.com/BBN-Q/PyQLab). We encourage end-users to explore using QGL for
creating pulse sequences. You may also find the sequence file export code to be a useful template when developing
your own libraries. A detailed instruction format specification can be found in the Concrete Instructions section.

2.3 Networking Setup

Once the APS2 has been powered on, the user may assign static IP addresses to each module. By default, the APS2
modules will have addresses on the 192.168.2.X subnet (e.g. the leftmost module in the system will have the address
192.168.2.2, and increase sequentially left-to-right). The enumerate()method in libaps2 may be used to find APS2
modules on your current subnet. Another method, set_ip_addr() or the flash utility may be used to program
new IP addresses. Since the APS2 modules will respond to any valid packet on its port, we recommend placing the
APS2 system on a private network, or behind a firewall. The APS2 can also be setup to obtain a dynamically assigned
IP address from a DHCP server. The flash utitily can be used to toggle between static and dynamic but the APS2
must be reset or power cycled for the setting to take effect. If the DHCP look-up fails the system will fall back to its
static IP address.

The control computer must be on the same subnet as the APS2 to respond to returning packets. Most operating systems
allow multiple IP addresses to coexist on the same network card so the control computer can add a virtual IP on the
APS2 subnet.

2.3.1 Windows

Under the Control Panel - Network and Internet - Network Connections click on the “Local Area Connection” and
then properties to change the adapter settings. Then set the properties of the TCP/IPv4 interface.

Then under the Advanced tab it will be possible to add additional IP addresses. Unfortunately, Windows does not
support multiple IP addresses with DHCP so a static address is required for the main network.

2.3.2 Linux

Temporary IP addresses can be obtained by adding additional ethernet interfaces using the ip command:

sudo ip addr add 192.168.2.29/24 dev eth0

A more permanent solution would involve editing the network interfaces file, e.g. /etc/network/interfaces.

2.3.3 OS X

In the System Preferences pane under Networking use the “Plus” button to add an interface.

2.3. Networking Setup 9

http://github.com/BBN-Q/QGL
http://github.com/BBN-Q/PyQLab

APS2 Documentation, Release 1.0

Fig. 2.1: Step 1 accessing the IPv4 settings for the network interface.

10 Chapter 2. Installation Guide

APS2 Documentation, Release 1.0

Fig. 2.2: Step 2 Adding addition IP addresses for the network interface.

2.4 Firmware Updates

BBN releases periodic firmware updates with bug-fixes and enhancements. These can be loaded onto the APS2
modules using the program executable:

./program
BBN AP2 Firmware Programming Executable
USAGE: program [options]

Options:
--help Print usage and exit.
--bitFile Path to firmware bitfile.
--ipAddr IP address of unit to program (optional).
--progMode (optional) Where to program firmware DRAM/EPROM/BACKUP (optional).
--logLevel (optional) Logging level level to print (optional; default=2/INFO).

Examples:
program --bitFile=/path/to/bitfile (all other options will be prompted for)
program --bitFile=/path/to/bitfile --ipAddr=192.168.2.2 --progMode=DRAM

The executable will prompt the user for IP address and programming mode. The APS2 can boot from multiple
locations: volatile DRAM; non-volatile flash or if all else fails a master backup in flash. The DRAM storage takes
only a few seconds to program and is used for temporary booting for testing purposes. It will be lost on a power cycle.
Once you are happy there are no issues with the new bitfile you can program it to the flash memory so the module will
boot from the new firmware on a power cycle. This process involves erasing, writing and verifying and takes several
minutes. The backup firmware should only be programmed in the rare case BBN releases an update to the backup

2.4. Firmware Updates 11

APS2 Documentation, Release 1.0

image. Should something catastrophic happen during programming (unplugging the ethernet cable) the module may
drop to the backup image which has a fixed IP of 192.168.2.123.

12 Chapter 2. Installation Guide

CHAPTER 3

Pulse Sequencing

3.1 Background

Sequencing typically requires construction of a sequence table which defines the order in which waveforms are played
along with control-flow instructions. In existing commercial AWGs, these control-flow instructions are limited to
repeated waveforms (basic looping) and non-conditional goto statements to jump to other sections of the waveform
table. More recently, equipment manufacturers have added rudimentary conditional elements through event triggers to
conditionally jump to an address in the waveform table upon receipt of an external trigger. This capability introduces
branches into the sequence table. Equipment manufacturers have also expanded the memory re-use concept by subse-
quences which allow for jumping to sections of the waveform table and then returning to the jump point in a manner
similar to a subroutine or function call in a standard programming language.

These recent additions expand the number of sequence flow graphs that can be built with these primitives. However,
they are still limited in several ways. First, previous implementations have not allowed arbitrary combinations of
control-flow constructs. For instance, it may be desirable to have all control-flow instructions be conditional, so that,
for example, subsequence execution could depend on external input. Or it may be desirable to construct recursive
control-flow structures, i.e. nested subsequences should be possible. Second, event triggers are not sufficiently ex-
pressive to choose between branches of more than two paths. With wider, multi-bit input interfaces, one can construct
higher-order branches (e.g. with a 2-bit input you could have four choices).

In short, rather than having an instruction set that allows for a limited number of control-flow graphs, we wish to
expand the instruction set of AWGs to allow for fully arbitrary control flow structures.

3.2 Superscalar Sequencer Design

To achieve arbitrary control flow in an AWG, we adopt modern CPU design practice and separate the functions of
control flow from instruction execution. An instruction decoder and scheduler dispatches waveform and marker in-
structions to independent waveform, marker and modulation engines, while using control-flow instructions to decide
which instruction to read next. This asynchronous design allows for efficient representation of common AWG se-
quences. However, it also requires reintroducing some sense of synchronization across the independent waveform and
marker engines. This is achieved in two ways: SYNC instructions and write flags. The SYNC instruction ensures
that all execution engines have finished any queued instructions before allowing sequencer execution to continue. The
write flag allows a sequence of waveform and marker instructions to be written to their respective execution engines si-
multaneously. A waveform or marker instruction with its write flag low will be queued for its corresponding execution
engine, but instruction delivery is delayed until the decoder receives an instruction with the write flag high.

13

APS2 Documentation, Release 1.0

program
counter

decoder /
dispatcher

Analog 1 Analog 2

Marker 1 Marker 2 Marker 3 Marker 4

instructions

control-flow

Fig. 3.1: Sequencer block diagram The APS has a single instruction decoder that dispatches instructions to multiple
waveform and marker engines.

3.3 Cache Design

The deep DDR3 memory comes with a latency penalty, particularly when jumping to random addresses. Rather than
flowing these constraints down to the sequencer, the APS2 attempts to hide the latency by caching instruction and
waveform data on board the sequencing FPGA. The cache follows some simple heuristics and needs some hints in the
forms of explicit PREFETCH commands for more sophisticated sequencing.

3.3.1 Instruction Cache

The APS2 instruction cache is split into two parts to support two different heuristics about how the sequence will
move through the instruction stream. Both caches operate with cache lines of 128 instructions. The first cache is a
circular buffer centered around the current instruction address that supports the notion that the most likely direction
is forward motion through the instruction stream with potentially jumps to recently played addresses when looping.
The controller greedily prefetches additional cache lines ahead of the current address but leaves a buffer of previously
played cache lines. Function calls do not fit into these heuristics so the second part of the cache is a fully associative
to support jumps anywhere to subroutines. The subroutine caches are filled in round-robin fashion with explicit
PREFETCH instructions. The controller will ignore 8PREFETCH instructions where the line is already in the cache.
If the sequencer asks for an address not in either cache the cache will flush the circular buffer and fetch the aligned
line into the start of the circular buffer. The sequencer LED will blink 1 per second to indicate the cache stall.

1
2

8
 i
n
st

ru
ct

io
n
s

cu
rr

e
n
t

a
d

d
re

ss
 l
in

e

u
n
fi
lle

d

u
n
fi
lle

d

(a) (b)

1
2

8
 i
n
st

ru
ct

io
n
s

Fig. 3.2: Instruction cache architecture The instruction cache has two part: (a) a circular buffer centered around the
currently playing address and (b) a fully associative cache for subroutine calls.

14 Chapter 3. Pulse Sequencing

APS2 Documentation, Release 1.0

3.3.2 Waveform Cache

The waveform cache can hold a maximum of 131072 (128k) samples. When the cache is enabled, the cache preloads
the first 128k samples from waveform memory. If the waveform library is smaller than this then nothing further is
needed. To support sequences that need deeper waveform memory, the cache is split into two to enable bank bouncing
between a playing and a loading section. Loading is triggered by explicit waveform engine PREFETCH commands
which will load 64k samples at an address aligned to a 64k sample boundary. Due to the vagaries of SDRAM accesses
the time for this prefetch varies but should be approximately 200𝜇s. Should the waveform engines ask for an address
not in the waveform cache the cache controller will flush fetch the aligned 64k sample segment into the first half. The
sequencer LED will blink twice per second to indicated the cache miss.

playing
(i)

(ii)

(iii)

playing prefetching

playingprefetching

Fig. 3.3: Waveform cache architecture The waveform cache can be used to simply play waveforms from the first
128k samples (i) or with explicit waveform PREFETCH commands can be used in bank-bouncer mode (ii) and (iii).

3.4 Waveform Modulation

When an APS2 slice is used to drive the I and Q ports of an I/Q mixer to amplitude and phase modulate a microwave
carrier it is convenient to bring some features typically baked into the waveforms back into the hardware. For example,
if the I/Q mixer is used to single-side-band modulate the carrier the hardware can track the phase evolution through
non deterministic delays and the phase modulation can be updated as part of the sequence. This can then even occur
conditionally as part of the sequence control flow.

To support both the SSB modulation and dynamic frame updates, the APS2 can dispatch instructions to the modulation
engine. The modulation engine controls the modulator which has up to four (current firmware has two) numerically
controlled oscillators (NCO). When selected, the NCO with a phase Θ rotates the (a,b) output pair to (a cosΘ + b sinΘ,
b cosΘ - a sinΘ). Multiple NCOs are supported to enable merging multiple logical channels at different frequencies
onto the same physical channel. The modulation engine supports the following instructions

WAIT stall until a trigger is received

SYNC stall until a sync signal is received

RESET PHASE reset the phase of the selected NCO(s)

SET PHASE OFFSET set the phase offset of the selected NCO(s)

SET PHASE INCREMENT set the phase increment of the selected NCO(s) which sets an effective frequency

UPDATE FRAME update the frame of the selected NCO(s) by adding to the current frame

MODULATE apply modulation using the selected NCO for a given number of samples

All NCO phase commands are held until the the next boundary which is the end of the currently playing MODULATE
command or a trigger/sync signal being received. The commands are held to allow them to occur at specific instances.
For example, we want the phase to be reset at the trigger or the Z rotation implemented as a frame change to occur at
the end of a pulse.

In addition, to account for mixer imperfections that can be inverted by appropriate adjustments of the waveforms the
APS2 applies a 2x2 correction matrix applied to the I/Q pairs followed by a DC shift.

3.4. Waveform Modulation 15

APS2 Documentation, Release 1.0

Rotation

NCO 1 NCO 2 NCO 3 NCO 4

sin/cos
LUT

OffsetMixer
Correction

Scale
Waveform

Data

Modulation
Engine

Fig. 3.4: Modulator block diagram Block diagram of the on-board modulation capabilities. The NCOs phase
accumulators are controlled by the modulation engine which can also choose which NCO to select on a pulse by pulse
basis. The selected phase is used for a sin/cos look up table (LUT) which provides values for the rotation matrix.
The waveform pairs are subsequently processed through of arbitrary 2x2 matrix for amplitude and phase imbalance,
channel scaling and offset.

16 Chapter 3. Pulse Sequencing

CHAPTER 4

Trigger Distribution Module

The trigger distribution module (TDM) provides a flexible mechanism for distributing triggers and pulse sequence
steering information across an APS2 crate. Since we expect our users to have diverse requirements for distributing
steering information, we have decided to deliver the TDM as a reconfigurable device with a basic firmware that will
satisfy certain needs.

4.1 Base Functionality

The base firmware delivered with the TDM will distribute signals captured on its front-panel interface to all APS2
modules connected by SATA cables. Port T8 is used as a ‘valid’ signal to indicate that data is ready to capture on T1-
T7. On the rising of a signal on T8, the signals on T1-T7 are captured into a 7-bit trigger word which is immediately
distributed across the APS2 crate. Each of the trigger ports T1-T8 drives a comparator with a programmable threshold.
The base firmware fixes this threshold at 0.8V.

4.2 Building Custom Firmware

The TDM firmware source may be found here: https://github.com/BBN-Q/APS2-TDM

To get starting creating your own APS2 TDM firmware, you need a copy of Xilinx Vivado 2015.1 (the free Webpack
edition is sufficient). Note that there are more recent versions of Vivado, but that the firmware source refers to specific
versions of Xilinx IP cores, and it may be necessary to convert these for use with later Vivado versions. The APS2
TDM firmware relies upon one not-free Xilinx IP Core, the Tri-Mode Ethernet Media Access Controller, or TEMAC:
http://www.xilinx.com/products/intellectual-property/temac.html

You can build the firmware without buying a TEMAC license, but the controller will stop functioning ~8 hours after
loading the image, and you will be forced to power cycle the APS2 TDM to continue. We recommend purchasing a
project license for the Xilinx TEMAC if you plan to build your own TDM firmware.

Refer to the README in the APS2-TDM firmware source for instructions on creating a Vivado project.

17

https://github.com/BBN-Q/APS2-TDM
http://www.xilinx.com/products/intellectual-property/temac.html

APS2 Documentation, Release 1.0

18 Chapter 4. Trigger Distribution Module

CHAPTER 5

APS2 Instruction Set

5.1 Abstract Instructions

Arbitrary control flow requires three concepts: sequences, loops (repetition) and conditional execution. We add to this
set the concept of subroutines because of their value in structured programming and memory re-use.

The BBN APS2 has two memories: a waveform memory and an instruction memory. These memories are accessed
via an intermediate caching mechanism to provide low-latency access to nearby sections of memory. In addition,
the APS has four other resources available for managing control flow: a repeat counter, an instruction counter, a
stack, and a comparison register. The instruction counter points to the current address in instruction memory. The
APS2 sequence controller reads and executes operations in instruction memory at the instruction pointer. Unless
the instruction specifies otherwise, by default the controller increments the instruction pointer upon executing each
instruction. The available abstract instructions are:

SYNC
WAIT
WAVEFORM address N
MARKER channel state N
LOAD_REPEAT count
REPEAT address
CMP operator N
LOAD_CMP
GOTO address
CALL address
RETURN
MODULATOR
PREFETCH address
NOOP

We explain each of these instructions below.

SYNC—Halts instruction dispatch until waveform and marker engines have executed all queued instructions. The
write flag should be set to broadcast this instruction.

WAIT—Indicates that waveform and marker engines should wait for a trigger before continuing. The write flag should
be set to broadcast this instruction.

19

APS2 Documentation, Release 1.0

WAVEFORM—Indicates that the APS should play back length N data points starting at the given waveform memory
address. An additional flag marks the waveform as a time-amplitude variant, which outputs data at a fixed address for
N counts.

MARKER—Indicates the APS should hold marker channel in state (0 or 1) for N samples.

LOAD_REPEAT—Loads the given value into the repeat counter.

REPEAT—Decrements the repeat counter. If the resulting value is greater than zero, jumps to the given instruction
address by updating the instruction counter.

CMP—Compares the value of the comparison register to the mask N with any of these operators: =, ̸=, >,<. So,
(CMP ̸= 0) would be true if the comparison register contains any value other than zero.

LOAD_CMP—Loads the comparison register with the next value from the message queue (received from the trigger
distribution module). If the queue is empty, this instruction will halt execution until a message arrives.

GOTO—Jumps to the given address by updating the instruction counter.

CALL—Pushes the current instruction and repeat counters onto the stack, then jumps to the given address by updating
the instruction counter.

MODULATOR—A modulator instruction.

RETURN—Moves (pops) the top values on the stack to the instruction and repeat counters, jumping back to the most
recent CALL instruction.

PREFETCH—Prefetches a cache line of instructions starting at address

NOOP—Null or No Operation

These instructions easily facilitate two kinds of looping: iteration and while loops. The former is achieved through
use of LOAD_REPEAT to set the value of the repeat counter, followed by the loop body, and terminated by REPEAT
to jump back to the beginning of the loop. The latter is achieved by a conditional GOTO followed by the loop body,
where the address of the GOTO is set to the end of the loop body.

Subroutines are implemented with the CALL and RETURN instructions. The address of a CALL instruction can
indicate the first instruction in instruction memory of a subroutine. The subroutine may have multiple exit points, all
of which are marked by a RETURN instruction.

Conditional execution is directly supported by the GOTO, CALL, and RETURN instructions. When these instructions
are preceeded by a CMP instruction, their execution depends on the comparison resulted. Consequently, the stated
instruction set is sufficient for arbitrary control flow.

Finally, filling the waveform cache is time consuming, requiring several hundred microseconds. Therefore, the
PREFETCH instruction allows one to schedule this costly operation during “dead time” in an experiment, e.g. imme-
diately prior to instructions that wait for a trigger.

5.2 Concrete Instructions

The APS2 uses a 64-bit instruction format, divided into header (bits 63-56), and payload (bits 55-0). The format of
the payload depends on instruction op code.

20 Chapter 5. APS2 Instruction Set

APS2 Documentation, Release 1.0

5.2.1 Instruction header (8-bits)

Bit(s) Description
7-4 op code
3-2 engine select (0-3)
1 reserved
0 write flag

The op code determines the instruction type. For MARKER instructions, the ‘engine select’ field chooses the output
channel of the instruction. The write flag is used to indicate the final instruction in a group of WAVEFORM and
MARKER instructions to be sent simultaneously to their respective execution engines.

5.2.2 Instruction op codes

Code instruction
0x0 WAVEFORM
0x1 MARKER
0x2 WAIT
0x3 LOAD_REPEAT
0x4 REPEAT
0x5 CMP
0x6 GOTO
0x7 CALL
0x8 RETURN
0x9 SYNC
0xA MODULATOR
0xB LOAD_CMP
0xC PREFETCH

5.2.3 Instruction payload (56-bits)

The 56-bit payload formats for the various instruction op codes are described below.

5.2.4 WAVEFORM

Bit(s) Description
47-46 op code (0 = play waveform, 1 = wait for trig, 2 = wait for sync, 3 = prefetch)
45 T/A pair flag
44-24 count
23-0 address

The top two bits of the WAVEFORM payload are an op code for the waveform engine. A PLAY_WAVEFORM
op code causes the waveform engine to play the waveform starting at address for count quad-samples. When the
time/amplitude pair flag is set, the waveform engine will create a constant- amplitude waveform by holding the analog
output at the value given at address for count quad-samples. The WAIT_FOR_TRIG and WAIT_FOR_SYNC op
codes direct the waveform engine to pause until receipt of an input trigger or a sequence SYNC input, respectively. The
PREFETCH op code causes the waveform cache to prefetch 64k samples from addresss into the pending waveform
cache bank.

5.2. Concrete Instructions 21

APS2 Documentation, Release 1.0

5.2.5 MARKER

Bit(s) Description
47-46 op code (0 = play marker, 1 = wait for trig, 2 = wait for sync)
45-37 reserved
36-33 transition word
32 state
31-0 count (firmwave versions 2.5-2.33 support only 20 bit count)

The top two bits of the MARKER payload are an op code for the marker engine. A PLAY_MARKER op code causes
the marker engine to hold the marker output in value state for count quad-samples. When the count reaches zero, the
marker engine will output the 4-bit transition word. One use of this transition word is to achieve single- sample resolu-
tion on a low-to-high or high-to-low transition of the marker output. The WAIT_FOR_TRIG and WAIT_FOR_SYNC
op codes function identically to the WAVEFORM op codes.

5.2.6 CMP

Bit(s) Description
9-8 cmp code (0 = equal, 1 = not equal, 2 = greater than, 3 = less than)
7-0 mask

The CMP operation compares the current value of the 8-bit comparison register to mask using the operator given by
the cmp code. The result of this comparison effects conditional execution of following GOTO, CALL, and RETURN
instructions.

5.2.7 LOAD_CMP

Loads the comparison register with the next value from the message queue (received from the trigger distribution
module). If the queue is empty, this instruction will halt execution until a message arrives. This instruction ignores all
payload data.

5.2.8 GOTO, CALL, and REPEAT

Bit(s) Description
25-0 address

Jumps to address. For GOTO and CALL, the jump may be conditional if proceeded by a CMP instruction. For
REPEAT, the jump is conditioned on the repeat counter.

5.2.9 LOAD_REPEAT

Bit(s) Description
15-0 repeat count

The repeat count gives the number of times a section of code should be repeated, i.e. to execute a sequence N times,
one uses a repeat count of N-1.

5.2.10 PREFETCH

Bit(s) Description
25-0 address

22 Chapter 5. APS2 Instruction Set

APS2 Documentation, Release 1.0

Prefetches a cache-line (128 instructions) starting at address into the subroutine cache.

5.2.11 WAIT and SYNC

Bit(s) Description
47-46 op code (0 = play waveform/marker, 1 = wait for trig, 2 = wait for sync)

The payloads for the WAIT and SYNC instructions must also be valid WAVEFORM and MARKER payloads. There-
fore, in addition to indicating WAIT or SYNC in the instruction header, the instruction type must also appear in the
payload. The write flag should be set to immediately dispatch this instruction.

5.2.12 RETURN

This instruction ignores all payload data.

5.2.13 MODULATOR

Bit(s) Description
47-45 op code
44 reserved
43-40 nco select
39-32 reserved
31-0 payload

The modulator op codes are enumerate as follows:

0x0 modulate using selected nco for count (payload)

0x1 reset selected nco phase accumulator

0x2 wait for trigger

0x3 set selected nco phase increment (payload)

0x4 wait for sync

0x5 set selected nco phase offset (payload)

0x6 reserved

0x7 update selected nco frame (payload)

The nco select bit field gives one bit to each NCO. In the current firmware there are two NCO’s. For example, to set
the frequency of the second NCO the bit field would read 0010 or to reset the phase of both NCOs it would read
0011.

All phase payloads are fixed point integers UQ2.28 representing portions of a circle. The frequency is determined
with respect to the 300MHz system clock. For example, setting a phase increment of 1/3 * 2^28 = 0x02aaaaab gives
a modulation frequency of 50MHz. Integers greater than 2 give frequencies greater than the Nyquist frequency of
600MHz and will be folded back in as negative frequencies.

5.2. Concrete Instructions 23

APS2 Documentation, Release 1.0

5.3 Example Sequences

5.3.1 Ramsey

To give a concrete example of construction of a standard QIP experiment in the APS2 format, consider a Ramsey
experiment consisting of two 𝜋/2-pulses separated by a variable delay. If the waveform memory has a null-pulse at
offset 0x00 and a 16-sample 𝜋/2-pulse at offset 0x01, then the Ramsey sequence might in abstract format would look
like:

SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 10
WAVEFORM 0x01 4
SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 20
WAVEFORM 0x01 4
SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 30
WAVEFORM 0x01 4

.

.

.
GOTO 0x00

The {SYNC, WAIT} sequences demarcate separate Ramsey delay experiments, where the SYNC command ensures
that there is no residual data in any execution engine before continuing, and the WAIT command indicates to wait for
a trigger. The GOTO command at the end of the sequence is crucial to ensure that the instruction decoder doesn’t “fall
off” into garbage data at the end of instruction memory.

5.3.2 CPMG

The Carr-Purcell-Meiboom-Gill pulse sequence uses a repeated delay-𝜋-delay sequence to refocus spins in a fluctuat-
ing environment. The 𝜋 pulse is offset by 90 degrees to the intial 𝜋/2 pulse that creates the coherence and even numbers
of 𝜋 pulses are prefered for robustness. We can pull in many elements of arbitrary flow control to compactly describe
this sequence. We will use a waveform library with three entries: a null pulse at offset 0x00, a 16-sample 𝜋/2-pulse at
offset 0x01, and a 16-sample 𝜋-pulse at offset 0x05. Note that offsets are also written in terms of quad-samples, so the
memory address range of the first 𝜋/2 pulse is [0x01,0x04]. The Hahn echo delay-𝜋-delay is considered a subroutine.
To ensure even multiples a CPMG subroutine then loops over the Hahn echo twice. The two subroutines are placed at
the cache-line aligned address 1024 Then a CPMG sequence with 2, 4, 8, 16 ... loops is:

SYNC
WAIT
WAVEFORM 0x01 4 # first 90
LOAD_REPEAT 0
CALL 1024 # call the CPMG subroutine
REPEAT 3
LOAD_REPEAT 1
CALL 1024 # call the CPMG subroutine
REPEAT 6
LOAD_REPEAT 3

24 Chapter 5. APS2 Instruction Set

APS2 Documentation, Release 1.0

CALL 1024 # call the CPMG subroutine
REPEAT 6
LOAD_REPEAT 7
CALL 1024 # call the CPMG subroutine
REPEAT 9

.

.

.
WAVEFORM 0x01 4 # final 90
GOTO 0x00

NOOP
NOOP
NOOP

.

.

.
pad with NOOP's to address 1024
start CPMG subroutine
LOAD_REPEAT 1
CALL 1028
REPEAT 1024
RETURN
start Hahn echo subroutine
WAVEFORM T/A 0x00 25 # delay
WAVEFORM 0x05 4 # 𝜋 pulse
WAVEFORM T/A 0x00 25 #delay
RETURN

5.3.3 Active Qubit Reset

Here we dynamically steer the sequence in response to a qubit measurment in order to actively drive the qubit to the
ground state:

GOTO 0x06 # jump over 'Reset' method definition
start of 'Reset' method
WAIT # wait for qubit measurement data to arrive
CMP = 0 # if the qubit is in the ground state, return
RETURN
otherwise, do a pi pulse
WAVEFORM 0x05 4
GOTO 0x01 # go back to the beginning of 'Reset'
end of 'Reset' method
SYNC
CALL 0x01 # call 'Reset'
qubit is reset, do something...

.

.

.
GOTO 0x00

In this example, we define a ‘Reset’ method for flipping the qubit state if it is not currently in the ground state. The
method is defined in instructions 1-5 of the instruction table. We preceed the method definition with a GOTO command
to unconditionally jump over the method definition. The structure of the ‘Reset’ method is a while loop: it only exits
when the comparison register is equal to zero. We assume that this register’s value is updated to the current qubit state
on every input trigger.

5.3. Example Sequences 25

APS2 Documentation, Release 1.0

26 Chapter 5. APS2 Instruction Set

CHAPTER 6

Formats

6.1 Waveforms

Stored as arrays of signed 16-bit integers.

6.2 Instructions

Stored as arrays of unsigned 64-bit integers, with the instruction header in the 8 most signficant bits.

6.3 Sequence Files

HDF5 container for waveform and instruction data. The structure of this HDF5 file is as follows:

/version - attribute containing version information for the container structure
/chan_1/instructions - uint64 vector of instruction data
/chan_1/waveforms - int16 vector of waveform data
/chan_2/waveforms - int16 vector of waveform data

27

APS2 Documentation, Release 1.0

28 Chapter 6. Formats

CHAPTER 7

API Reference

BBN provides a C-API shared library (libaps2) for communicating with the APS2, as well as MATLAB and Julia
wrappers for the driver. We follow language conventions for index arguments, so channel arguments in the C-API are
zero- indexed, while in MATLAB and Julia they are one-indexed. Most of the C-API methods require a device serial
(an IP address) as the first argument. In MATLAB and Julia, the serial is stored in a device object and helper functions
inject it as necessary.

Before calling a device specific API the device must be connected by calling connect_APS. This sets up the ethernet
interface. Unloading the shared library without disconnecting all APS2s may cause a crash as the library unloading
order is uncontrolled. In addition, after every APS2 reset init_APS must be called once to properly setup the DAC
timing and cache- controller.

7.1 Enums

Nearly all the library calls return an APS2_STATUS enum. If there are no errors then this will be APS2_OK. Oth-
erwise a more detailed description of the error an be obtained from get_error_msg. See the Matlab and Julia
drivers for examples of how to wrap each library call with error checking. The enum and descriptions can be found
APS2_errno.h.

There are also enums for the trigger mode, run mode, running status and logging level. These can be found in
APS2_enums.h or logger.h.

7.2 High-level methods

Getter calls return the value in the memory referenced by the passed pointer. The caller is responsible for allocating
and managing the memory.

const char *get_error_msg(APS2_STATUS)

Returns the null-terminated error message string associated with the APS2_STATUS code.

APS2_STATUS get_numDevices(unsigned int *numDevices)

This method sends out a broadcast packet to find all APS2’s on the local subnet and returns the number
of devices found.

APS2_STATUS get_device_IPs(const char **deviceIPs)

Populates deviceIPs[] with C strings of APS2 IP addresses. The caller is responsible for sizing deviceIPs
appropriately. For example, in C++:

29

APS2 Documentation, Release 1.0

int numDevices = get_numDevices();
const char** serialBuffer = new const char*[numDevices];
get_device_IPs(serialBuffer);

APS2_STATUS connect_APS(const char *deviceIP)

Connects to the APS2 at the given IP address.

APS2_STATUS disconnect_APS(const char *deviceIP)

Disconnects the APS2 at the given IP address.

APS2_STATUS reset(const char *deviceIP, APS2_RESET_MODE)

Resets the APS2 at the given IP address. The resetMode parameter can be used to do a hard reset from
non-volatile flash memory to either the user or backup image or can reset the TCP connection should the
host computer not cleanly close it.

APS2_STATUS init_APS(const char *deviceIP, int force)

This method initializes the APS2 at the given IP address. This involves synchronizing and calibrating the
DAC clock timing and setting up the cache-controller. If force = 0, the driver will attempt to determine
if this procedure has already been run and return immediately. To force the driver to run the initialization
procedure, call with force = 1.

APS2_STATUS get_firmware_version(const char *deviceIP, uint32_t *version, uint32_t *git_sha1, uint32_t
*build_timestamp, char *version_string)

Returns computer and humand readable firmware version information. version returns the version number
of the currently loaded firmware. The major version number is contained in bits 15-8, while the minor
version number is in bits 7-0. So, a returned value of 513 indicates version 2.1. Bits 28-16 give the
number of commits since the tag and the top nibble set to d indicates a dirty working tree. git_sha1 is the
first 8 hexadecimal digits of the git SHA1 of the latest commit. build_timestamp is the build timestamp as
a hexadecimal string YYMMDDhh. The version_string will combine the previous values into a human
readable string similar to what is returned from git describe. Pass a null pointer for any unused terms.

APS2_STATUS get_uptime(const char *deviceIP, double *upTime)

Returns the APS2 uptime in seconds.

APS2_STATUS set_sampleRate(const char *deviceIP, unsigned int rate)

Sets the output sampling rate of the APS2 to rate (in MHz). By default the APS2 initializes with a rate of
1200 MHz. The allow values for rate are: 1200, 600, 300, and 200. WARNING: the APS2 firmware has
not been tested with sampling rates other than the default of 1200. In particular, it is expected that DAC
synchronization will fail at other update rates.

APS2_STATUS get_sampleRate(const char *deviceIP, unsigned int *rate)

Returns the current APS2 sampling rate in MHz.

APS2_STATUS set_channel_offset(const char *deviceIP, int channel, float offset)

Sets the offset of channel to offset. Note that the APS2 offsets the channels by digitally shifting the
waveform values, so non-zero values of offset may cause clipping to occur.

APS2_STATUS get_channel_offset(const char *deviceIP, int channel, float *offset)

Returns the current offset value of channel.

APS2_STATUS set_channel_scale(const char *deviceIP, int channel, float scale)

Sets the scale parameter for channel to scale. This method will cause the currently loaded waveforms
(and all subsequently loaded ones) to be multiplied by scale. Values greater than 1 may cause clipping.

30 Chapter 7. API Reference

APS2 Documentation, Release 1.0

APS2_STATUS get_channel_scale(const char *deviceIP, int channel, float *scale)

Returns the scale parameter for channel.

APS2_STATUS set_channel_enabled(const char *deviceIP, int channel, int enabled)

Enables (enabled = 1) or disables (enabled = 0) channel. Currently non-functional

APS2_STATUS get_channel_enabled(const char *deviceIP, int channel, int *enabled)

Returns the enabled state of channel.

APS2_STATUS set_mixer_amplitude_imbalance(const char * deviceIP, float amp)

Set the mixer amplitude imbalance tp amp and updates the correction matrix.

APS2_STATUS get_mixer_amplitude_imbalance(const char * deviceIP, float *amp)

Gets the mixer amplitude imbalance.

APS2_STATUS set_mixer_phase_skew(const char * deviceIP, float skew)

Sets the mixer phase skew (radians) to skew and updates the correction matrix.

APS2_STATUS get_mixer_phase_skew(const char * deviceIP, float *skew)

Gets the mixer phase skew (radians).

APS2_STATUS set_mixer_correction_matrix(const char * deviceIP, float *matrix)

Sets the complete 2x2 mixer correction matrix. Pass an array of four float to fill the matrix in row major
order.

APS2_STATUS get_mixer_correction_matrix(const char * deviceIP, float *matrix)

Gets the complete 2x2 mixer correction matrix in row major order.

APS2_STATUS set_trigger_source(const char *deviceIP, APS2_TRIGGER_SOURCE source)

Sets the trigger source to EXTERNAL, INTERNAL, SYSTEM, or SOFTWARE.

APS2_STATUS get_trigger_source(const char *deviceIP, APS2_TRIGGER_SOURCE *source)

Returns the current trigger source.

APS2_STATUS set_trigger_interval(const char *deviceIP, double interval)

Set the internal trigger interval to interval (in seconds). The internal trigger has a resolution of 3.333 ns
and a minimum interval of 6.67ns and maximum interval of 2^32+1 * 3.333 ns = 14.17s.

APS2_STATUS get_trigger_interval(const char *deviceIP, double *interval)

Returns the current internal trigger interval.

APS2_STATUS trigger(const char *deviceIP)

Sends a software trigger to the APS2.

APS2_STATUS set_waveform_float(const char *deviceIP, int channel, float *data, int numPts)

Uploads data to channel‘s waveform memory. numPts indicates the length of the data array. ±1 indicate
full-scale output.

APS2_STATUS set_waveform_int(const char *deviceIP, int channel, int16_t *data, int numPts)

Uploads data to channel‘s waveform memory. numPts indicates the length of the data array. Data should
contain 14-bit waveform data placed into the lower 14 bits (13-0) of each int16 element. Bits 15-14 in
each array element will be ignored.

APS2_STATUS set_markers(const char *deviceIP, int channel, uint8_t *data, int numPts)

7.2. High-level methods 31

APS2 Documentation, Release 1.0

FOR FUTURE USE ONLY Will add marker data in data to the currently loaded waveform on channel.

APS2_STATUS write_sequence(const char *deviceIP, uint64_t *data, uint32_t numWords)

Writes instruction sequence in data of length numWords.

APS2_STATUS load_sequence_file(const char *deviceIP, const char* seqFile)

Loads the APS2-structured HDF5 file given by the path seqFile. Be aware the backslash character must
be escaped (doubled) in C strings.

APS2_STATUS set_run_mode(const char *deviceIP, APS2_RUN_MODE mode)

Changes the APS2 run mode to sequence (RUN_SEQUENCE, the default), triggered waveform
(TRIG_WAVEFORM) or continuous loop waveform (CW_WAVEFORM) IMPORTANT NOTE The
run mode is not a state and the APS2 does not “remember” its current playback mode. The waveform
modes simply load a simple sequence to play a single waveform. In particular, uploading new sequence
or waveform data will cause the APS2 to return to ‘sequence’ mode. To use ‘waveform’ mode, call
set_run_mode only after calling set_waveform_float or set_waveform_int.

APS2_STATUS set_waveform_frequency(const char *deviceIP, float freq)

Sets the modulation frequency for waveform run mode to freq.

APS2_STATUS get_waveform_frequency(const char *deviceIP, float *freq)

Gets the modulation frequency for waveform run mode.

APS2_STATUS run(const char *deviceIP)

Enables the pulse sequencer.

APS2_STATUS stop(const char *deviceIP)

Disables the pulse sequencer.

APS2_STATUS get_runState(const char *deviceIP, APS2_RUN_STATE *state)

Returns the running state of the APS2.

APS2_STATUS get_mac_addr(const char *deviceIP, uint64_t *MAC)

Returns the MAC address of the APS2 at the given IP address.

APS2_STATUS set_ip_addr(const char *deviceIP, const char *ip_addr)

Sets the IP address of the APS2 currently at deviceIP to ip_addr. The IP address does not actually update
until reset() is called, or the device is power cycled. Note that if you change the IP and reset you will have
to disconnect and re-enumerate for the driver to pick up the new IP address.

7.3 Low-level methods

int set_log(char* logfile)

Directs logging information to logfile, which can be either a full file path, or one of the special strings
“stdout” or “stderr”.

int set_logging_level(TLogLevel level)

Sets the logging level to level (values between 0-8 logINFO to logDEBUG4). Determines the amount of
information written to the APS2 log file. The default logging level is 2 or logINFO.

int write_memory(const char *deviceIP, uint32_t addr, uint32_t* data, uint32_t numWords)

Write numWords of data to the APS2 memory starting at addr.

32 Chapter 7. API Reference

APS2 Documentation, Release 1.0

int read_memory(const char *deviceIP, uint32_t addr, uint32_t* data, uint32_t numWords)

Read numWords into data from the APS2 memory starting at addr.

int read_register(const char *deviceIP, uint32_t addr)

Returns the value of the APS2 register at addr.

7.3. Low-level methods 33

APS2 Documentation, Release 1.0

34 Chapter 7. API Reference

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

35

	Hardware Specifications
	Detailed Specifications
	Triggering
	Communications Interface
	Status LED's

	Installation Guide
	Hardware
	Software
	Networking Setup
	Firmware Updates

	Pulse Sequencing
	Background
	Superscalar Sequencer Design
	Cache Design
	Waveform Modulation

	Trigger Distribution Module
	Base Functionality
	Building Custom Firmware

	APS2 Instruction Set
	Abstract Instructions
	Concrete Instructions
	Example Sequences

	Formats
	Waveforms
	Instructions
	Sequence Files

	API Reference
	Enums
	High-level methods
	Low-level methods

	Indices and tables

