

 Navigation

 	
 index

 	
 next |

 	APS2 1.0 documentation

Raytheon BBN Technologies Arbitrary Pulse Sequencer 2

This document serves as the user manual and programming guide for the
Arbitrary Pulse Sequencer, version 2 (APS2).

Contents:

	Hardware Specifications
	Detailed Specifications

	Triggering

	Communications Interface

	Status LED’s

	Installation Guide
	Hardware

	Software

	Networking Setup

	Firmware Updates

	Pulse Sequencing
	Background

	Superscalar Sequencer Design

	Cache Design

	Waveform Modulation

	Trigger Distribution Module
	Base Functionality

	Building Custom Firmware

	APS2 Instruction Set
	Abstract Instructions

	Concrete Instructions

	Example Sequences

	Formats
	Waveforms

	Instructions

	Sequence Files

	API Reference
	Enums

	High-level methods

	Low-level methods

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

Hardware Specifications

The BBN Arbitrary Pulse Sequencer 2 (APS2) is a modular system providing up to
18 channels of analog waveform generation with a maximum output rate of 1.2
GS/s and 14-bits of vertical resolution. Each module in an APS2 system
provides two analog outputs, DC coupled into a fixed +/- 1V range, and four
digital outputs (1.5 V) for triggering other equipment. Each APS2 module has 1
GB of DDR3 SDRAM for waveform and sequence storage, which is enough for over
64 million sequence instructions. A low-latency cache allows for fast access
to 128K waveform samples. Each module can be independently triggered for
sophisticated waveform scenarios.

The digital and analog circuits have been carefully engineered to provide
extremely low-noise analog performance, resulting in a noise spectral density
that is orders of magnitude lower than competing products, as shown in
Noise Comparison.

Comparison of AWG output noise Output noise power versus frequency for
the Tektronix AWG5014, Innovative Integration X6-1000M, and BBN APS. The
APS’s linear power supplies and low-noise output amplifier lead to signficant
improvements in the noise performance. The II X6 is significantly better
than the Tek5014, but suffers from resonances in the noise spectrum because
it is in a host PC environment.

Detailed Specifications

[image: _images/APS2-front.jpg]
BBN APS2 front panel The front panel of the APS has two analog outputs,
4 marker outputs, a trigger input, two SATA ports, a 1 GigE port, a
10 MHz reference input and two status LEDs.

	Analog channels
	two 14-bit 1.2 GS/s outputs per module

	Digital channels
	four 1.5V outputs per module

	Analog Jitter
	7.5ps RMS

	Digital Jitter
	5ps RMS

	Rise/fall time
	2ns

	Settling time
	2ns to 10%, 10ns to 1%

	Trigger modes
	Internal, external, system, or software triggering

	Ext. trigger input
	1 V minimum into 50 Ω, 5 V maximum; triggered on rising edge

	Reference input
	10 MHz sine or square, 1V to 3.3V peak to peak (+4 to +14 dBm)

	Waveform cache
	128K samples

	Sequence memory
	64M instructions

	Min instruction duration
	8 samples

	Max instruction duration
	8M samples (~7ms at 1.2GS/s)

	Max loop repeats
	65,536

Triggering

The APS2 supports four different types of triggers. The internal mode
generates triggers on a programmable interval between 6.66ns and 14s. The
external mode listens for triggers on the front-panel SMA “trigger input”
port. In this mode, the APS2 is triggered on the rising edge of a 1-5V signal.
The system trigger accepts triggers on the SATA input port from the APS2
Trigger Distribution Module (TDM). Finally, the software mode allows the user
to trigger the APS2 via the host computer with the trigger() API method.

Communications Interface

The APS2 communicates with a host PC via UDP/TCP over 1GigE. 1GigE is required
so ensure all switches between the host computer and APS2 support 1GigE. The
APS2 supports static and DHCP assigned IP addresses. Instructions for setting
the APS2 IP addresses are contained in the Software section.

Status LED’s

The L1 and L2 LEDs provide status indicators for the communication (L1)
and sequencing (L2) firmware components.

L1:

	off - SFP port failure

	green breathing - no ethernet connection;

	solid green - link established (but not necessarily connected to host);

	green blinks - receiving or transmitting data;

	red - fatal communication error. Power cycle the module to restore connectivity.

L2:

	dark - idle;

	solid green - playback enabled and outputing sequences;

	green breathing - playback enabled but no trigger received in the past 100ms;

	solid red - fatal cache controller error. Power cycle the module to restore playback
functionality.

	blinking red - cache stall in playback. See cache for details.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

Installation Guide

Hardware

The BBN APS2 system contains one or more analog output modules and an trigger
distribution module in an enclosure that supplies power to each module. Up to 9
analog modules may be installed in a single 19” 8U enclosure, providing 18
analog output channels. Installing a new module only requires plugging it into a
free slot of a powered-off system, then connecting a SATA cable from the new APS
module to the trigger module.

Each module in an APS2 system acts as an independent network endpoint. The
modules communicate with a host computer via a UDP/TCP interface over 1GigE.
The APS2 will not negotiate down to 100Mb or 10Mb so ensure you have an
appropriate switch and patch cable. To ensure high-bandwidth throughput, it is
important that the APS2 and the host computer not be separated by too many
network hops. If possible, locate the host and APS2 on a common switch or router
[1].

While the APS can run in a standalone configuration, we recommend running with a
10 MHz (+7 dBm) external reference (square wave or sine wave). This reference
must be supplied at the corresponding front panel inputs before powering on the
system. Multiple devices can be synchronized by supplying an external trigger
that is phase locked to this same reference.

Software

In order to control the APS2, BBN provides a Windows shared library. You may
download this driver from our APS2 source code repository
(http://github.com/BBN-Q/libaps2). Click on ‘releases’ to find the latest
binaries. We provide MATLAB and Python wrappers to this library, but the APS2
may be used with any software that can call a C-API DLL. To use the MATLAB
driver, simply add the path of the unzipped driver to your MATLAB path. The
driver depends on other shared libraries, for example HDF5 and the gcc libstdc++
from MinGW-w64. We include these DLL’s with the Windows releases and they need
be in the same folder as the driver to ensure they can by dynamically loaded
with the libaps2 driver [2].

File List

The releases follow a directory structure that corresponds to the git
repository.

	
	examples - Example sequence and waveform files

	
	aps2_demo.m - Matlab demonstration script

	
	aps2_demo.py - Python demonstration script

	
	a full scale ramp;

	gaussian pulses from 256 samples down to 8 samples with 10ns gaps;

	square wave from 256 down to 8 samples with 10ns gaps;

	wfB.dat is negative wfA.dat.

	cpmg.h5 - a CPMG sequence Y90 - (delay - X180 - delay)^n - Y90m with n = [4, 8, 16, 32, 64]

	instr_prefetch.h5 - demonstration of subroutine prefetching

	ramsey.h5 - a Ramsey sequence X90 - delay - X90m

	ramsey_tppi.h5 - a Ramsey experiment with the second pulse phase modulated by Time Proportional Phase Increment using the PHASE_OFFSET instruction

	ramsey_tppi_ssb.h5- same as ramsey_tppi but with SSB modulation of the pulses using on-board modulation.

	ramsey_slipped.h5 - a Ramsey pattern but with the markers slipped by one sample to show the marker resolution and jitter.

	wfA.dat/wfB.dat - test waveform patterns for play_waveform executable as signed integers one sample per line:

	
	src - the source code

	
	src/lib - the shared library. libaps2.h contains the public API definitions.

	src/matlab - Matlab bindings to libaps2

	src/julia - Julia bindings to libaps2

	src/python - python bindings to libaps2

	src/util - test and utility command line programs. See below for description.

	src/C++ - C++ command line programs to play waveforms and sequences.

	src/wireshark - lua dissector for sniffing APS2 packets.

	
	build - compiled shared library and executable programs

	
	
	Shared library

	
	libaps2.dll - the main shared library

	load time dependencies for libaps2: libgcc_s_seh-1.dll, libhdf5-0.dll, libhdf5_cpp-0.dll, libstdc++-6.dll, libszip-0.dll, zlib1.dll

	
	Command line programs

	
	play_waveform.exe - command line program to play a single waveform on the analog channels.

	play_sequence.exe - command line program to play a HDF5 sequence file.

	
	Command line utilities

	
	enumerate.exe - get a list of APS2 modules visible on the network subnet.

	program.exe - update the firmware. See Firmware Updates.

	flash.exe - update IP/DHCP and MAC addresses and the boot chip configuration sequence.

	reset.exe - reset an APS2.

	
	Self-test programs

	
	run_tests.exe - runs the unit test suite

Writing Sequences

The BBN APS2 has advanced sequencing capabilities. Fully taking advantage of
these capabilities may require use of higher-level languages which can be
‘compiled down’ into sequence instructions. BBN has produced one such
language, called Quantum Gate Language (QGL, http://github.com/BBN-Q/QGL), as
well as a parameter management GUI in the PyQLab suite
(http://github.com/BBN-Q/PyQLab). We encourage end-users to explore using QGL
for creating pulse sequences. You may also find the sequence file export code
to be a useful template when developing your own libraries. A detailed
instruction format specification can be found in the Concrete Instructions
section.

Networking Setup

Once the APS2 has been powered on, the user may assign static IP addresses to
each module. By default, the APS2 modules will have addresses on the 192.168.2.X
subnet (e.g. the leftmost module in the system will have the address
192.168.2.2, and increase sequentially left-to-right). The enumerate()
method in libaps2 may be used to find APS2 modules on your current subnet.
Another method, set_ip_addr() or the flash utility may be used to
program new IP addresses. Since the APS2 modules will respond to any valid
packet on its port, we recommend placing the APS2 system on a private network,
or behind a firewall. The APS2 can also be setup to obtain a dynamically
assigned IP address from a DHCP server. The flash utitily can be used to
toggle between static and dynamic but the APS2 must be reset or power cycled for
the setting to take effect. If the DHCP look-up fails the system will fall back
to its static IP address.

The control computer must be on the same subnet as the APS2 to respond to
returning packets. Most operating systems allow multiple IP addresses to coexist
on the same network card so the control computer can add a virtual IP on the
APS2 subnet.

Windows

Under the Control Panel - Network and Internet - Network Connections click on
the “Local Area Connection” and then properties to change the adapter settings.
Then set the properties of the TCP/IPv4 interface.

[image: _images/WindowsDualHome-1.png]
Step 1 accessing the IPv4 settings for the network interface.

Then under the Advanced tab it will be possible to add additional IP addresses.
Unfortunately, Windows does not support multiple IP addresses with DHCP so a
static address is required for the main network.

[image: _images/WindowsDualHome-2.png]
Step 2 Adding addition IP addresses for the network interface.

Linux

Temporary IP addresses can be obtained by adding additional ethernet
interfaces using the ip command:

sudo ip addr add 192.168.2.29/24 dev eth0

A more permanent solution would involve editing the network interfaces file,
e.g. /etc/network/interfaces.

OS X

In the System Preferences pane under Networking use the “Plus” button to add an
interface.

Firmware Updates

BBN releases periodic firmware updates with bug-fixes and enhancements. These
can be loaded onto the APS2 modules using the program executable:

./program
BBN AP2 Firmware Programming Executable
USAGE: program [options]

Options:
 --help Print usage and exit.
 --bitFile Path to firmware bitfile.
 --ipAddr IP address of unit to program (optional).
 --progMode (optional) Where to program firmware DRAM/EPROM/BACKUP (optional).
 --logLevel (optional) Logging level level to print (optional; default=2/INFO).

Examples:
 program --bitFile=/path/to/bitfile (all other options will be prompted for)
 program --bitFile=/path/to/bitfile --ipAddr=192.168.2.2 --progMode=DRAM

The executable will prompt the user for IP address and programming mode. The
APS2 can boot from multiple locations: volatile DRAM; non-volatile flash or if
all else fails a master backup in flash. The DRAM storage takes only a few
seconds to program and is used for temporary booting for testing purposes. It
will be lost on a power cycle. Once you are happy there are no issues with the
new bitfile you can program it to the flash memory so the module will boot from
the new firmware on a power cycle. This process involves erasing, writing and
verifying and takes several minutes. The backup firmware should only be
programmed in the rare case BBN releases an update to the backup image. Should
something catastrophic happen during programming (unplugging the ethernet cable)
the module may drop to the backup image which has a fixed IP of 192.168.2.123.

Footnotes

	[1]	The APS2 typically uses static self-assigned IP addresses and should
ideally be behind the same router as the control computer.

	[2]	There is the potential for conflicts with previously loaded DLL’s
that are incompatible versions. For example, if you have loaded another
driver into Matlab that was built with a different version of MinGW-w64
or trying to load libaps2 into Julia which was built with a different
version of MinGW-w64. There is no easy solution to this problem on the
Windows platform. Please contact BBN if you run into this situation.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

Pulse Sequencing

Background

Sequencing typically requires construction of a sequence table which defines the
order in which waveforms are played along with control-flow instructions. In
existing commercial AWGs, these control-flow instructions are limited to
repeated waveforms (basic looping) and non-conditional goto statements to jump
to other sections of the waveform table. More recently, equipment manufacturers
have added rudimentary conditional elements through event triggers to
conditionally jump to an address in the waveform table upon receipt of an
external trigger. This capability introduces branches into the sequence table.
Equipment manufacturers have also expanded the memory re-use concept by
subsequences which allow for jumping to sections of the waveform table and
then returning to the jump point in a manner similar to a subroutine or function
call in a standard programming language.

These recent additions expand the number of sequence flow graphs that can be
built with these primitives. However, they are still limited in several ways.
First, previous implementations have not allowed arbitrary combinations of
control-flow constructs. For instance, it may be desirable to have all
control-flow instructions be conditional, so that, for example, subsequence
execution could depend on external input. Or it may be desirable to construct
recursive control-flow structures, i.e. nested subsequences should be possible.
Second, event triggers are not sufficiently expressive to choose between
branches of more than two paths. With wider, multi-bit input interfaces, one can
construct higher-order branches (e.g. with a 2-bit input you could have four
choices).

In short, rather than having an instruction set that allows for a limited number
of control-flow graphs, we wish to expand the instruction set of AWGs to allow
for fully arbitrary control flow structures.

Superscalar Sequencer Design

Sequencer block diagram The APS has a single instruction decoder that
dispatches instructions to multiple waveform and marker engines.

To achieve arbitrary control flow in an AWG, we adopt modern CPU design practice
and separate the functions of control flow from instruction execution. An
instruction decoder and scheduler dispatches waveform and marker instructions to
independent waveform, marker and modulation engines, while using control-flow
instructions to decide which instruction to read next. This asynchronous design
allows for efficient representation of common AWG sequences. However, it also
requires reintroducing some sense of synchronization across the independent
waveform and marker engines. This is achieved in two ways: SYNC instructions and
write flags. The SYNC instruction ensures that all execution engines have
finished any queued instructions before allowing sequencer execution to
continue. The write flag allows a sequence of waveform and marker instructions
to be written to their respective execution engines simultaneously. A waveform
or marker instruction with its write flag low will be queued for its
corresponding execution engine, but instruction delivery is delayed until the
decoder receives an instruction with the write flag high.

Cache Design

The deep DDR3 memory comes with a latency penalty, particularly when jumping to
random addresses. Rather than flowing these constraints down to the sequencer,
the APS2 attempts to hide the latency by caching instruction and waveform data
on board the sequencing FPGA. The cache follows some simple heuristics and needs
some hints in the forms of explicit PREFETCH commands for more sophisticated
sequencing.

Instruction Cache

The APS2 instruction cache is split into two parts to support two different
heuristics about how the sequence will move through the instruction stream. Both
caches operate with cache lines of 128 instructions. The first cache is a
circular buffer centered around the current instruction address that supports
the notion that the most likely direction is forward motion through the
instruction stream with potentially jumps to recently played addresses when
looping. The controller greedily prefetches additional cache lines ahead of the
current address but leaves a buffer of previously played cache lines. Function
calls do not fit into these heuristics so the second part of the cache is a
fully associative to support jumps anywhere to subroutines. The subroutine
caches are filled in round-robin fashion with explicit PREFETCH instructions.
The controller will ignore 8PREFETCH instructions where the line is already in
the cache. If the sequencer asks for an address not in either cache the cache
will flush the circular buffer and fetch the aligned line into the start of the
circular buffer. The sequencer LED will blink 1 per second to indicate the cache
stall.

Instruction cache architecture The instruction cache has two part: (a) a circular buffer centered around the currently playing address and (b) a fully
associative cache for subroutine calls.

Waveform Cache

The waveform cache can hold a maximum of 131072 (128k) samples. When the cache
is enabled, the cache preloads the first 128k samples from waveform memory. If
the waveform library is smaller than this then nothing further is needed. To
support sequences that need deeper waveform memory, the cache is split into two
to enable bank bouncing between a playing and a loading section. Loading is
triggered by explicit waveform engine PREFETCH commands which will load 64k
samples at an address aligned to a 64k sample boundary. Due to the vagaries of
SDRAM accesses the time for this prefetch varies but should be approximately
200μs. Should the waveform engines ask for an address not in the waveform cache
the cache controller will flush fetch the aligned 64k sample segment into the
first half. The sequencer LED will blink twice per second to indicated the cache
miss.

Waveform cache architecture The waveform cache can be used to simply play waveforms from the first 128k samples (i) or with explicit waveform PREFETCH commands can be used in bank-bouncer mode (ii) and (iii).

Waveform Modulation

When an APS2 slice is used to drive the I and Q ports of an I/Q mixer to
amplitude and phase modulate a microwave carrier it is convenient to
bring some features typically baked into the waveforms back into the hardware. For
example, if the I/Q mixer is used to single-side-band modulate the carrier the
hardware can track the phase evolution through non deterministic delays and the
phase modulation can be updated as part of the sequence. This can then even
occur conditionally as part of the sequence control flow.

To support both the SSB modulation and dynamic frame updates, the APS2 can
dispatch instructions to the modulation engine. The modulation engine controls
the modulator which has up to four (current firmware has two) numerically
controlled oscillators (NCO). When selected, the NCO with a phase Θ rotates the
(a,b) output pair to (a cosΘ + b sinΘ, b cosΘ - a sinΘ). Multiple NCOs are
supported to enable merging multiple logical channels at different frequencies
onto the same physical channel. The modulation engine supports the following
instructions

	WAIT

	stall until a trigger is received

	SYNC

	stall until a sync signal is received

	RESET PHASE

	reset the phase of the selected NCO(s)

	SET PHASE OFFSET

	set the phase offset of the selected NCO(s)

	SET PHASE INCREMENT

	set the phase increment of the selected NCO(s) which sets an effective frequency

	UPDATE FRAME

	update the frame of the selected NCO(s) by adding to the current frame

	MODULATE

	apply modulation using the selected NCO for a given number of samples

All NCO phase commands are held until the the next boundary which is the end of
the currently playing MODULATE command or a trigger/sync signal being
received. The commands are held to allow them to occur at specific instances.
For example, we want the phase to be reset at the trigger or the Z rotation
implemented as a frame change to occur at the end of a pulse.

In addition, to account for mixer imperfections that can be inverted by
appropriate adjustments of the waveforms the APS2 applies a 2x2 correction
matrix applied to the I/Q pairs followed by a DC shift.

Modulator block diagram Block diagram of the on-board modulation
capabilities. The NCOs phase accumulators are controlled by the modulation
engine which can also choose which NCO to select on a pulse by pulse basis.
The selected phase is used for a sin/cos look up table (LUT) which provides
values for the rotation matrix. The waveform pairs are subsequently
processed through of arbitrary 2x2 matrix for amplitude and phase imbalance,
channel scaling and offset.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

Trigger Distribution Module

The trigger distribution module (TDM) provides a flexible mechanism for
distributing triggers and pulse sequence steering information across an APS2
crate. Since we expect our users to have diverse requirements for distributing
steering information, we have decided to deliver the TDM as a reconfigurable
device with a basic firmware that will satisfy certain needs.

Base Functionality

The base firmware delivered with the TDM will distribute signals captured on its
front-panel interface to all APS2 modules connected by SATA cables. Port T8 is
used as a ‘valid’ signal to indicate that data is ready to capture on T1-T7. On
the rising of a signal on T8, the signals on T1-T7 are captured into a 7-bit
trigger word which is immediately distributed across the APS2 crate. Each of the
trigger ports T1-T8 drives a comparator with a programmable threshold. The base
firmware fixes this threshold at 0.8V.

Building Custom Firmware

The TDM firmware source may be found here:
https://github.com/BBN-Q/APS2-TDM

To get starting creating your own APS2 TDM firmware, you need a copy of Xilinx
Vivado 2015.1 (the free Webpack edition is sufficient). Note that there are more
recent versions of Vivado, but that the firmware source refers to specific
versions of Xilinx IP cores, and it may be necessary to convert these for use
with later Vivado versions. The APS2 TDM firmware relies upon one not-free
Xilinx IP Core, the Tri-Mode Ethernet Media Access Controller, or TEMAC:
http://www.xilinx.com/products/intellectual-property/temac.html

You can build the firmware without buying a TEMAC license, but the controller
will stop functioning ~8 hours after loading the image, and you will be forced
to power cycle the APS2 TDM to continue. We recommend purchasing a project
license for the Xilinx TEMAC if you plan to build your own TDM firmware.

Refer to the README in the APS2-TDM firmware source for instructions on creating
a Vivado project.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

APS2 Instruction Set

Abstract Instructions

Arbitrary control flow requires three concepts: sequences, loops (repetition)
and conditional execution. We add to this set the concept of subroutines
because of their value in structured programming and memory re-use.

The BBN APS2 has two memories: a waveform memory and an
instruction memory. These memories are accessed via an intermediate
caching mechanism to provide low-latency access to nearby sections of memory.
In addition, the APS has four other resources available for managing control
flow: a repeat counter, an instruction counter, a stack, and a comparison
register. The instruction counter points to the current address in instruction
memory. The APS2 sequence controller reads and executes operations in
instruction memory at the instruction pointer. Unless the instruction
specifies otherwise, by default the controller increments the instruction
pointer upon executing each instruction. The available abstract
instructions are:

SYNC

WAIT

WAVEFORM address N

MARKER channel state N

LOAD_REPEAT count

REPEAT address

CMP operator N

LOAD_CMP

GOTO address

CALL address

RETURN

MODULATOR

PREFETCH address

NOOP

We explain each of these instructions below.

SYNC—Halts instruction dispatch until waveform and marker engines have
executed all queued instructions. The write flag should be set to broadcast
this instruction.

WAIT—Indicates that waveform and marker engines should wait for a trigger
before continuing. The write flag should be set to broadcast
this instruction.

WAVEFORM—Indicates that the APS should play back length N data points
starting at the given waveform memory address. An additional flag marks the
waveform as a time-amplitude variant, which outputs data at a fixed
address for N counts.

MARKER—Indicates the APS should hold marker channel in state
(0 or 1) for N samples.

LOAD_REPEAT—Loads the given value into the repeat counter.

REPEAT—Decrements the repeat counter. If the resulting value is greater than
zero, jumps to the given instruction address by updating the instruction
counter.

CMP—Compares the value of the comparison register to the mask N with any
of these operators: \(=, \neq, >, <\). So, (CMP \(\neq\) 0) would be
true if the comparison register contains any value other than zero.

LOAD_CMP—Loads the comparison register with the next value from the message
queue (received from the trigger distribution module). If the queue is empty,
this instruction will halt execution until a message arrives.

GOTO—Jumps to the given address by updating the instruction counter.

CALL—Pushes the current instruction and repeat counters onto the stack, then
jumps to the given address by updating the instruction counter.

MODULATOR—A modulator instruction.

RETURN—Moves (pops) the top values on the stack to the instruction and
repeat counters, jumping back to the most recent CALL instruction.

PREFETCH—Prefetches a cache line of instructions starting at address

NOOP—Null or No Operation

These instructions easily facilitate two kinds of looping: iteration and while
loops. The former is achieved through use of LOAD_REPEAT to set the value of the
repeat counter, followed by the loop body, and terminated by REPEAT to jump back
to the beginning of the loop. The latter is achieved by a conditional GOTO
followed by the loop body, where the address of the GOTO is set to the end of
the loop body.

Subroutines are implemented with the CALL and RETURN instructions. The address
of a CALL instruction can indicate the first instruction in instruction memory
of a subroutine. The subroutine may have multiple exit points, all of which
are marked by a RETURN instruction.

Conditional execution is directly supported by the GOTO, CALL, and RETURN
instructions. When these instructions are preceeded by a CMP instruction,
their execution depends on the comparison resulted. Consequently, the stated
instruction set is sufficient for arbitrary control flow.

Finally, filling the waveform cache is time consuming, requiring several hundred
microseconds. Therefore, the PREFETCH instruction allows one to schedule this
costly operation during “dead time” in an experiment, e.g. immediately prior
to instructions that wait for a trigger.

Concrete Instructions

The APS2 uses a 64-bit instruction format, divided into header (bits 63-56),
and payload (bits 55-0). The format of the payload depends on instruction op
code.

Instruction header (8-bits)

	Bit(s)
	Description

	7-4
	op code

	3-2
	engine select (0-3)

	1
	reserved

	0
	write flag

The op code determines the instruction type. For MARKER instructions, the
‘engine select’ field chooses the output channel of the instruction. The write
flag is used to indicate the final instruction in a group of WAVEFORM and
MARKER instructions to be sent simultaneously to their respective execution
engines.

Instruction op codes

	Code
	instruction

	0x0
	WAVEFORM

	0x1
	MARKER

	0x2
	WAIT

	0x3
	LOAD_REPEAT

	0x4
	REPEAT

	0x5
	CMP

	0x6
	GOTO

	0x7
	CALL

	0x8
	RETURN

	0x9
	SYNC

	0xA
	MODULATOR

	0xB
	LOAD_CMP

	0xC
	PREFETCH

Instruction payload (56-bits)

The 56-bit payload formats for the various instruction op codes are described
below.

WAVEFORM

	Bit(s)
	Description

	47-46
	op code (0 = play waveform, 1 = wait for trig, 2 = wait for sync, 3 = prefetch)

	45
	T/A pair flag

	44-24
	count

	23-0
	address

The top two bits of the WAVEFORM payload are an op code for the waveform engine.
A PLAY_WAVEFORM op code causes the waveform engine to play the waveform starting
at address for count quad-samples. When the time/amplitude pair flag is set,
the waveform engine will create a constant- amplitude waveform by holding the
analog output at the value given at address for count quad-samples. The
WAIT_FOR_TRIG and WAIT_FOR_SYNC op codes direct the waveform engine to pause
until receipt of an input trigger or a sequence SYNC input, respectively. The
PREFETCH op code causes the waveform cache to prefetch 64k samples from
addresss into the pending waveform cache bank.

MARKER

	Bit(s)
	Description

	47-46
	op code (0 = play marker, 1 = wait for trig, 2 = wait for sync)

	45-37
	reserved

	36-33
	transition word

	32
	state

	31-0
	count (firmwave versions 2.5-2.33 support only 20 bit count)

The top two bits of the MARKER payload are an op code for the marker engine. A
PLAY_MARKER op code causes the marker engine to hold the marker output in
value state for count quad-samples. When the count reaches zero,
the marker engine will output the 4-bit transition word. One use of this
transition word is to achieve single- sample resolution on a low-to-high or
high-to-low transition of the marker output. The WAIT_FOR_TRIG and
WAIT_FOR_SYNC op codes function identically to the WAVEFORM op codes.

CMP

	Bit(s)
	Description

	9-8
	cmp code (0 = equal, 1 = not equal, 2 = greater than, 3 = less than)

	7-0
	mask

The CMP operation compares the current value of the 8-bit comparison register
to mask using the operator given by the cmp code. The result of this
comparison effects conditional execution of following GOTO, CALL, and RETURN
instructions.

LOAD_CMP

Loads the comparison register with the next value from the message
queue (received from the trigger distribution module). If the queue is empty,
this instruction will halt execution until a message arrives. This instruction
ignores all payload data.

GOTO, CALL, and REPEAT

	Bit(s)
	Description

	25-0
	address

Jumps to address. For GOTO and CALL, the jump may be conditional if proceeded
by a CMP instruction. For REPEAT, the jump is conditioned on the repeat counter.

LOAD_REPEAT

	Bit(s)
	Description

	15-0
	repeat count

The repeat count gives the number of times a section of code should be
repeated, i.e. to execute a sequence N times, one uses a repeat count of N-1.

PREFETCH

	Bit(s)
	Description

	25-0
	address

Prefetches a cache-line (128 instructions) starting at address into the
subroutine cache.

WAIT and SYNC

	Bit(s)
	Description

	47-46
	op code (0 = play waveform/marker, 1 = wait for trig, 2 = wait for sync)

The payloads for the WAIT and SYNC instructions must also be valid WAVEFORM
and MARKER payloads. Therefore, in addition to indicating WAIT or SYNC in the
instruction header, the instruction type must also appear in the payload. The
write flag should be set to immediately dispatch this instruction.

RETURN

This instruction ignores all payload data.

MODULATOR

	Bit(s)
	Description

	47-45
	op code

	44
	reserved

	43-40
	nco select

	39-32
	reserved

	31-0
	payload

The modulator op codes are enumerate as follows:

	0x0

	modulate using selected nco for count (payload)

	0x1

	reset selected nco phase accumulator

	0x2

	wait for trigger

	0x3

	set selected nco phase increment (payload)

	0x4

	wait for sync

	0x5

	set selected nco phase offset (payload)

	0x6

	reserved

	0x7

	update selected nco frame (payload)

The nco select bit field gives one bit to each NCO. In the current firmware
there are two NCO’s. For example, to set the frequency of the second NCO the bit
field would read 0010 or to reset the phase of both NCOs it would read 0011.

All phase payloads are fixed point integers UQ2.28 representing portions of a
circle. The frequency is determined with respect to the 300MHz system clock.
For example, setting a phase increment of 1/3 * 2^28 = 0x02aaaaab gives a
modulation frequency of 50MHz. Integers greater than 2 give frequencies greater
than the Nyquist frequency of 600MHz and will be folded back in as negative
frequencies.

Example Sequences

Ramsey

To give a concrete example of construction of a standard QIP experiment in the
APS2 format, consider a Ramsey experiment consisting of two π/2-pulses
separated by a variable delay. If the waveform memory has a null-pulse at
offset 0x00 and a 16-sample π/2-pulse at offset 0x01, then the Ramsey
sequence might in abstract format would look like:

SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 10
WAVEFORM 0x01 4
SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 20
WAVEFORM 0x01 4
SYNC
WAIT
WAVEFORM 0x01 4
WAVEFORM T/A 0x00 30
WAVEFORM 0x01 4
 .
 .
 .
GOTO 0x00

The {SYNC, WAIT} sequences demarcate separate Ramsey delay
experiments, where the SYNC command ensures that there is no residual
data in any execution engine before continuing, and the WAIT command
indicates to wait for a trigger. The GOTO command at the end of the
sequence is crucial to ensure that the instruction decoder doesn’t “fall
off” into garbage data at the end of instruction memory.

CPMG

The Carr-Purcell-Meiboom-Gill pulse sequence uses a repeated delay-π-delay
sequence to refocus spins in a fluctuating environment. The π pulse is offset by
90 degrees to the intial π/2 pulse that creates the coherence and even numbers
of π pulses are prefered for robustness. We can pull in many elements of
arbitrary flow control to compactly describe this sequence. We will use a
waveform library with three entries: a null pulse at offset 0x00, a 16-sample
π/2-pulse at offset 0x01, and a 16-sample π-pulse at offset 0x05. Note that
offsets are also written in terms of quad-samples, so the memory address range
of the first π/2 pulse is [0x01,0x04]. The Hahn echo delay-π-delay is considered
a subroutine. To ensure even multiples a CPMG subroutine then loops over the
Hahn echo twice. The two subroutines are placed at the cache-line aligned
address 1024 Then a CPMG sequence with 2, 4, 8, 16 ... loops is:

 SYNC
 WAIT
 WAVEFORM 0x01 4 # first 90
 LOAD_REPEAT 0
 CALL 1024 # call the CPMG subroutine
 REPEAT 3
 LOAD_REPEAT 1
 CALL 1024 # call the CPMG subroutine
 REPEAT 6
 LOAD_REPEAT 3
 CALL 1024 # call the CPMG subroutine
 REPEAT 6
 LOAD_REPEAT 7
 CALL 1024 # call the CPMG subroutine
 REPEAT 9
 .
 .
 .
 WAVEFORM 0x01 4 # final 90
 GOTO 0x00
NOOP
 NOOP
 NOOP
 .
 .
 .
 # pad with NOOP's to address 1024
 # start CPMG subroutine
 LOAD_REPEAT 1
 CALL 1028
 REPEAT 1024
 RETURN
 # start Hahn echo subroutine
 WAVEFORM T/A 0x00 25 # delay
 WAVEFORM 0x05 4 # π pulse
 WAVEFORM T/A 0x00 25 #delay
 RETURN

Active Qubit Reset

Here we dynamically steer the sequence in response to a qubit measurment in
order to actively drive the qubit to the ground state:

GOTO 0x06 # jump over 'Reset' method definition
start of 'Reset' method
WAIT # wait for qubit measurement data to arrive
CMP = 0 # if the qubit is in the ground state, return
RETURN
otherwise, do a pi pulse
WAVEFORM 0x05 4
GOTO 0x01 # go back to the beginning of 'Reset'
end of 'Reset' method
SYNC
CALL 0x01 # call 'Reset'
qubit is reset, do something...
 .
 .
 .
GOTO 0x00

In this example, we define a ‘Reset’ method for flipping the qubit state if it
is not currently in the ground state. The method is defined in instructions
1-5 of the instruction table. We preceed the method definition with a GOTO
command to unconditionally jump over the method definition. The structure of
the ‘Reset’ method is a while loop: it only exits when the comparison register
is equal to zero. We assume that this register’s value is updated to the
current qubit state on every input trigger.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	APS2 1.0 documentation

Formats

Waveforms

Stored as arrays of signed 16-bit integers.

Instructions

Stored as arrays of unsigned 64-bit integers, with the instruction header in
the 8 most signficant bits.

Sequence Files

HDF5 container for waveform and instruction data. The structure of this HDF5 file is as follows:

/version - attribute containing version information for the container structure

/chan_1/instructions - uint64 vector of instruction data

/chan_1/waveforms - int16 vector of waveform data

/chan_2/waveforms - int16 vector of waveform data

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	APS2 1.0 documentation

API Reference

BBN provides a C-API shared library (libaps2) for communicating with the APS2,
as well as MATLAB and Julia wrappers for the driver. We follow language
conventions for index arguments, so channel arguments in the C-API are zero-
indexed, while in MATLAB and Julia they are one-indexed. Most of the C-API
methods require a device serial (an IP address) as the first argument. In
MATLAB and Julia, the serial is stored in a device object and helper functions
inject it as necessary.

Before calling a device specific API the device must be connected by calling
connect_APS. This sets up the ethernet interface. Unloading the shared
library without disconnecting all APS2s may cause a crash as the library
unloading order is uncontrolled. In addition, after every APS2 reset
init_APS must be called once to properly setup the DAC timing and cache-
controller.

Enums

Nearly all the library calls return an APS2_STATUS enum. If there are no
errors then this will be APS2_OK. Otherwise a more detailed description of
the error an be obtained from get_error_msg. See the Matlab and Julia
drivers for examples of how to wrap each library call with error checking. The
enum and descriptions can be found APS2_errno.h.

There are also enums for the trigger mode, run mode, running status and
logging level. These can be found in APS2_enums.h or logger.h.

High-level methods

Getter calls return the value in the memory referenced by the passed pointer.
The caller is responsible for allocating and managing the memory.

const char *get_error_msg(APS2_STATUS)

Returns the null-terminated error message string associated with the
APS2_STATUS code.

APS2_STATUS get_numDevices(unsigned int *numDevices)

This method sends out a broadcast packet to find all APS2’s on the local
subnet and returns the number of devices found.

APS2_STATUS get_device_IPs(const char **deviceIPs)

Populates deviceIPs[] with C strings of APS2 IP addresses. The caller is
responsible for sizing deviceIPs appropriately. For example, in C++:

int numDevices = get_numDevices();
const char** serialBuffer = new const char*[numDevices];
get_device_IPs(serialBuffer);

APS2_STATUS connect_APS(const char *deviceIP)

Connects to the APS2 at the given IP address.

APS2_STATUS disconnect_APS(const char *deviceIP)

Disconnects the APS2 at the given IP address.

APS2_STATUS reset(const char *deviceIP, APS2_RESET_MODE)

Resets the APS2 at the given IP address. The resetMode parameter can be used
to do a hard reset from non-volatile flash memory to either the user or backup
image or can reset the TCP connection should the host computer not cleanly
close it.

APS2_STATUS init_APS(const char *deviceIP, int force)

This method initializes the APS2 at the given IP address. This involves
synchronizing and calibrating the DAC clock timing and setting up the
cache-controller. If force = 0, the driver will attempt to determine if
this procedure has already been run and return immediately. To force the
driver to run the initialization procedure, call with force = 1.

APS2_STATUS get_firmware_version(const char *deviceIP, uint32_t *version, uint32_t *git_sha1, uint32_t *build_timestamp, char *version_string)

Returns computer and humand readable firmware version information. version
returns the version number of the currently loaded firmware. The major version
number is contained in bits 15-8, while the minor version number is in bits
7-0. So, a returned value of 513 indicates version 2.1. Bits 28-16 give the
number of commits since the tag and the top nibble set to d indicates a dirty
working tree. git_sha1 is the first 8 hexadecimal digits of the git SHA1 of
the latest commit. build_timestamp is the build timestamp as a hexadecimal
string YYMMDDhh. The version_string will combine the previous values into a
human readable string similar to what is returned from git describe. Pass a
null pointer for any unused terms.

APS2_STATUS get_uptime(const char *deviceIP, double *upTime)

Returns the APS2 uptime in seconds.

APS2_STATUS set_sampleRate(const char *deviceIP, unsigned int rate)

Sets the output sampling rate of the APS2 to rate (in MHz). By default the
APS2 initializes with a rate of 1200 MHz. The allow values for rate are: 1200,
600, 300, and 200. WARNING: the APS2 firmware has not been tested with
sampling rates other than the default of 1200. In particular, it is expected
that DAC synchronization will fail at other update rates.

APS2_STATUS get_sampleRate(const char *deviceIP, unsigned int *rate)

Returns the current APS2 sampling rate in MHz.

APS2_STATUS set_channel_offset(const char *deviceIP, int channel, float offset)

Sets the offset of channel to offset. Note that the APS2 offsets the
channels by digitally shifting the waveform values, so non-zero values of
offset may cause clipping to occur.

APS2_STATUS get_channel_offset(const char *deviceIP, int channel, float *offset)

Returns the current offset value of channel.

APS2_STATUS set_channel_scale(const char *deviceIP, int channel, float scale)

Sets the scale parameter for channel to scale. This method will cause the
currently loaded waveforms (and all subsequently loaded ones) to be multiplied
by scale. Values greater than 1 may cause clipping.

APS2_STATUS get_channel_scale(const char *deviceIP, int channel, float *scale)

Returns the scale parameter for channel.

APS2_STATUS set_channel_enabled(const char *deviceIP, int channel, int enabled)

Enables (enabled = 1) or disables (enabled = 0) channel. Currently non-functional

APS2_STATUS get_channel_enabled(const char *deviceIP, int channel, int *enabled)

Returns the enabled state of channel.

APS2_STATUS set_mixer_amplitude_imbalance(const char * deviceIP, float amp)

Set the mixer amplitude imbalance tp amp and updates the correction matrix.

APS2_STATUS get_mixer_amplitude_imbalance(const char * deviceIP, float *amp)

Gets the mixer amplitude imbalance.

APS2_STATUS set_mixer_phase_skew(const char * deviceIP, float skew)

Sets the mixer phase skew (radians) to skew and updates the correction matrix.

APS2_STATUS get_mixer_phase_skew(const char * deviceIP, float *skew)

Gets the mixer phase skew (radians).

APS2_STATUS set_mixer_correction_matrix(const char * deviceIP, float *matrix)

Sets the complete 2x2 mixer correction matrix. Pass an array of four float to
fill the matrix in row major order.

APS2_STATUS get_mixer_correction_matrix(const char * deviceIP, float *matrix)

Gets the complete 2x2 mixer correction matrix in row major order.

APS2_STATUS set_trigger_source(const char *deviceIP, APS2_TRIGGER_SOURCE source)

Sets the trigger source to EXTERNAL, INTERNAL, SYSTEM, or SOFTWARE.

APS2_STATUS get_trigger_source(const char *deviceIP, APS2_TRIGGER_SOURCE *source)

Returns the current trigger source.

APS2_STATUS set_trigger_interval(const char *deviceIP, double interval)

Set the internal trigger interval to interval (in seconds). The
internal trigger has a resolution of 3.333 ns and a minimum interval of
6.67ns and maximum interval of 2^32+1 * 3.333 ns = 14.17s.

APS2_STATUS get_trigger_interval(const char *deviceIP, double *interval)

Returns the current internal trigger interval.

APS2_STATUS trigger(const char *deviceIP)

Sends a software trigger to the APS2.

APS2_STATUS set_waveform_float(const char *deviceIP, int channel, float *data, int numPts)

Uploads data to channel‘s waveform memory. numPts indicates the
length of the data array. \(\pm 1\) indicate full-scale output.

APS2_STATUS set_waveform_int(const char *deviceIP, int channel, int16_t *data, int numPts)

Uploads data to channel‘s waveform memory. numPts indicates the length
of the data array. Data should contain 14-bit waveform data placed into the
lower 14 bits (13-0) of each int16 element. Bits 15-14 in each array element
will be ignored.

APS2_STATUS set_markers(const char *deviceIP, int channel, uint8_t *data, int numPts)

FOR FUTURE USE ONLY Will add marker data in data to the currently
loaded waveform on channel.

APS2_STATUS write_sequence(const char *deviceIP, uint64_t *data, uint32_t numWords)

Writes instruction sequence in data of length numWords.

APS2_STATUS load_sequence_file(const char *deviceIP, const char* seqFile)

Loads the APS2-structured HDF5 file given by the path seqFile. Be aware
the backslash character must be escaped (doubled) in C strings.

APS2_STATUS set_run_mode(const char *deviceIP, APS2_RUN_MODE mode)

Changes the APS2 run mode to sequence (RUN_SEQUENCE, the default),
triggered waveform (TRIG_WAVEFORM) or continuous loop waveform
(CW_WAVEFORM) IMPORTANT NOTE The run mode is not a state and the APS2
does not “remember” its current playback mode. The waveform modes simply
load a simple sequence to play a single waveform. In particular, uploading
new sequence or waveform data will cause the APS2 to return to ‘sequence’
mode. To use ‘waveform’ mode, call set_run_mode only after calling
set_waveform_float or set_waveform_int.

APS2_STATUS set_waveform_frequency(const char *deviceIP, float freq)

Sets the modulation frequency for waveform run mode to freq.

APS2_STATUS get_waveform_frequency(const char *deviceIP, float *freq)

Gets the modulation frequency for waveform run mode.

APS2_STATUS run(const char *deviceIP)

Enables the pulse sequencer.

APS2_STATUS stop(const char *deviceIP)

Disables the pulse sequencer.

APS2_STATUS get_runState(const char *deviceIP, APS2_RUN_STATE *state)

Returns the running state of the APS2.

APS2_STATUS get_mac_addr(const char *deviceIP, uint64_t *MAC)

Returns the MAC address of the APS2 at the given IP address.

APS2_STATUS set_ip_addr(const char *deviceIP, const char *ip_addr)

Sets the IP address of the APS2 currently at deviceIP to ip_addr. The
IP address does not actually update until reset() is called, or the
device is power cycled. Note that if you change the IP and reset you will
have to disconnect and re-enumerate for the driver to pick up the new IP
address.

Low-level methods

int set_log(char* logfile)

Directs logging information to logfile, which can be either a full file
path, or one of the special strings “stdout” or “stderr”.

int set_logging_level(TLogLevel level)

Sets the logging level to level (values between 0-8 logINFO to logDEBUG4). Determines the
amount of information written to the APS2 log file. The default logging
level is 2 or logINFO.

int write_memory(const char *deviceIP, uint32_t addr, uint32_t* data, uint32_t numWords)

Write numWords of data to the APS2 memory starting at addr.

int read_memory(const char *deviceIP, uint32_t addr, uint32_t* data, uint32_t numWords)

Read numWords into data from the APS2 memory starting at addr.

int read_register(const char *deviceIP, uint32_t addr)

Returns the value of the APS2 register at addr.

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	APS2 1.0 documentation

Index

 Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/down.png

_images/WindowsDualHome-2.png
§ Local Area Cannection Properties =]

B Local Area Cannection Status &=
Advanced TCP/P Settings =)
Internet Protocol Version 4 (TCP/IPyi) Prapeties =)
T Settings [pnis | wins
General
P addvesses
Youcan get 1P setings assigned automatically F yournetiork supports
thiscapabiky. Otherise, you need to sk your nebwark adinsrator 7 addvess Subet mask
far the apprapriate P setings.
15216851 255.255.255.0
Obtain an 1P adcress automatically
© Usethe ollwing P adess: Cae) i) Cremn)
7 addvess: a —
‘Subnet mask: 255 255 .254 . 0 Default gatenays:
Default gateway: Gateway Metric
Automatic
Obtain DN server ackress automatically
© Lse the ollwing DS server adcesses Y —
9 add) [edte.] [[Remove

Preferred DI server: .

alternate DS server: 9] Automatic metrc

Valdate settings upon exk ([Chdvanced.n

T)]

_images/APS2-front.jpg

_images/WindowsDualHome-1.png
[SE=]

D o b e me b N b < Tor] [eorh Networ o P

ul]

LEIONE:

Organize v Disable this network device Diagnose this connection Rename this connection >

— Local Area Connection
L W it

G Intel(R) 82578V Gigabit Network C.

B Locel Avea Connection Staus [| [0 Localares Commection roperis
[Gorra | [etwaking |
Connastin Comnestusig
1Pv4 Connectiviy: Internet & ItellR) 82575 Gigabit Network Connection
1Pv6 Connctivty o et access
edi state Entled
i L tays et T comnecton uss the folling s

Speed: 1.0Gbps

9% Client for Microsolt Networks

15800 Packet Schedter

12 e it Shing o Microsch Retwarks
-4 Intemet Protocol Yersion & (TCP/IPYE]

Aty = LinLayer Tpelogy Discovery Mg 10 Diver
- = LinkLayer Topclogy Discovey Respender
sort — QM Recsived

=

<
) Uil Properies

oy 197,777,508 155,65677 E—
esrton

Transrission Contal Pratocal/Itemet Protosol. The default

_static/comment-close.png

search.html

 Navigation

 		
 index

 		APS2 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, Raytheon BBN Technologies.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

